Emergent damage pattern recognition using immune network theory
نویسندگان
چکیده
This paper presents an emergent pattern recognition approach based on the immune network theory and hierarchical clustering algorithms. The immune network allows its components to change and learn patterns by changing the strength of connections between individual components. The presented immunenetwork-based approach achieves emergent pattern recognition by dynamically generating an internal image for the input data patterns. The members (feature vectors for each data pattern) of the internal image are produced by an immune network model to form a network of antibody memory cells. To classify antibody memory cells to different data patterns, hierarchical clustering algorithms are used to create an antibody memory cell clustering. In addition, evaluation graphs and L method are used to determine the best number of clusters for the antibody memory cell clustering. The presented immune-network-based emergent pattern recognition (INEPR) algorithm can automatically generate an internal image mapping to the input data patterns without the need of specifying the number of patterns in advance. The INEPR algorithm has been tested using a benchmark civil structure. The test results show that the INEPR algorithm is able to recognize new structural damage patterns.
منابع مشابه
AN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION
A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...
متن کاملAgent-based artificial immune system approach for adaptive damage detection in monitoring networks
This paper presents an agent-based artificial immune system approach for adaptive damage detection in distributed monitoring networks. The presented approach establishes a new monitoring paradigm by embodying desirable immune attributes, such as adaptation, immune pattern recognition, and selforganization, into monitoring networks. In the artificial immune system-based paradigm, a group of auto...
متن کاملLIQUEFACTION POTENTIAL ASSESSMENT USING MULTILAYER ARTIFICIAL NEURAL NETWORK
In this study, a low-cost, rapid and qualitative evaluation procedure is presented using dynamic pattern recognition analysis to assess liquefaction potential which is useful in the planning, zoning, general hazard assessment, and delineation of areas, Dynamic pattern recognition using neural networks is generally considered to be an effective tool for assessing of hazard potential on the b...
متن کاملOptimal control of mobile monitoring agents in immune-inspired wireless monitoring networks
This paper studies optimal control of mobile monitoring agents in artificial-immune-system-based (AIS-based) monitoring networks. In AIS-based structural health monitoring (SHM) networks, the active structural healthmonitoring is performed by a group ofmobilemonitoring agents equippedwith damage pattern recognition algorithms. The mobile monitoring agents mimic immune cells in the natural immun...
متن کاملHebbian neural networks and the emergence of minds
The goal of this work is to provide an overview of artificial neural networks and some of their emergent properties. The neural network model is briefly motivated from a biological point of view, and then the typical network architecture is introduced. A Back-Propagation learning rule is briefly explored using a simple code as an example of supervised learning, and Hebbian learning is introduce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011